Worksheet on Limits and $\epsilon-\delta$ Proofs:

GSI: Chris Peterson

Problem 1: Consider the function $f(x)$ defined by the following two cases:
$f(x)=\frac{1}{n+1} \quad$ for $x \in\left(\frac{1}{n+1}, \frac{1}{n}\right]$ where $n=1,2,3, \ldots$
$f(x)=1 \quad$ for all other x.
Draw a graph of this function and determine $\lim _{x \rightarrow 0^{+}} f(x)$ (the limit as f approaches 0 from the right). Use both an $\epsilon-\delta$ argument and a Squeeze Theorem argument to show that your answer is correct.

Problem 2: Determine the following limits (if they exist):

- $\lim _{x \rightarrow 6}\left(\frac{\sqrt{x+3}-3}{x-6}\right)$
- $\lim _{x \rightarrow 3}\left(\frac{\sqrt{x-2}}{x-3}\right)$
- $\lim _{x \rightarrow-12}\left(\frac{\sqrt{x^{2}+25}-13}{x+12}\right)$ (Similar to 2.3.30)

Problem 3: For any positive integer n, the formula $f(x)=n x$ determines a line with slope n. Use an $\epsilon-\delta$ argument to show that $\lim _{x \rightarrow 1}(n x)=n$. How does the relationship between ϵ and δ change as n increases? Use a graph to illustrate this dynamic.

Problem 4: Determine $\lim _{x \rightarrow 4} \frac{x-3}{(x-4)^{2}}$. Prove that your answer is correct. (You may use either an $\epsilon-\delta$ type proof or a Squeeze Theorem argument.)

Problem 5 (Challenge): We know that limits of the function $f(x)=x^{2}$ can be quickly determined using the Direct Substitution Property. Use an $\epsilon-\delta$ argument to show that $\lim _{x \rightarrow c}(f(x))=c^{2}$ for any real number c. How does the relationship between ϵ and δ change as c moves away from zero?

